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ABSTRACT

In an earlier report 1I] *a consistent estimation scheme
was given for Gaussian Markov random field models. In this
report we consider some statistical properties of the resulting
estimate. Specifically, we derive an expression for the asym-
ptotic mean square error of the estimate for a general model
and compare the efficiency of this estimate with the popular
coding estimate for a simple first order isotropic model.--,------
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1. Introduction

Markov random field (MRF) models are of much interest in

image analysis and processing. For instance, they have been

used in texture analysis [2,3] and image restoration [4-6].

They are also of interest in the analysis of field data [7].

MRF models characterize the special nature of the statistical

dependency of intensity levels over a neighborhood in an image.

If y(s) denotes the intensity level at location s, then y(s)

is written as a linear combination of intensity levels {y(s+r),

rEN} (where N is known as the neighbor set of dependence)and

additive noise. The members of set N are pairs of integers

(kj) not including (0,0). For example, the first order MRF

model results when N= {(0,l),(i,0),(0,-i),(-i,0)} and the second

order MRF model results when N= {(-i,0),(i,0),(0,-i),(0,i),(-i,-i),

(-ii),(I,-i),(i,)1. Each MRF model is characterized by a set of

linear weights and the variance of the additive noise.

Suppose we are given an array of intensity level variations

{y(s),sE4, ={s:(i,j), li,j M} and we are interested in fitting

a Gaussian MRF model to this data. We also assume that the spec-

ific structure of the MRF model characterized by the neighbor set

N is known. The problem of estimating N has been considered else-

where [1,8]. Three estimation methods, namely the coding method

[7], the maximum likelihood (ML) method, and the method in [91

can be used to obtain estimates of parameters characterizing a

MRF model. It is the intent of this paper to analyze in some

detail the statistical properties of the estimate in [1,8].



Specifically, we shall derive an expression for the asymptotic

mean square error of the estimate for an arbitrary MRF model.

We evaluate this expression for a simple first order isotropic

MRF model and compare the efficiency of the estimate with the

popular coding estimate.
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2. Estimates and their statistical properties in MRF models

2.1 Model Representation

Assume that the given image data {y(s)) obeys the MRF model

in (2.1), with the associated neighbor set N:

y(s)= E r y(s+r)+e(s),sE E, (2.1)
rEN r

In (2.1) the neighbor set N is symmetric, i.e., if rEN then

-rEN. Further, the coefficients satisfy the constraint er=6 _r.

The stationary noise sequence {e(s)) is partly characterized by

E(e(s) Iy(r))=O Ysj'r

(2.2)

Using (2.1) and (2.2) one can prove that the noise sequence

{e(s)} is correlated with the correlation structure

E(e(s) e(r))=V, s=r

=-6 s-rv,(s-r)EN (2.3)

= 0 otherwise

It can be shown by methods similar to [10,11] that an observation

y(s) obeying (2.1) with the conditions (2.3) indeed satisfies

the Markov condition

p(y(s) I y(r) ,rEQ,r~s)

= p(y(s)I y(s+t) ,t(N)

We shall characterize the neighbor set for the MRF model using

the set Ns, which includes members from the non-symmetric half

of N, i.e., if sEN. then -sENS and N = {s:sEN sU{-s:sENsI. A

sufficient condition to ensure stationarity is [7]

.k X
Zzekk 1~ z 2 <1 whenever 1z 11 1 z2 1 I



2.2 A consistent estimation scheme [1,8]:

Consider the estimates

0* = (E q(s) qT(s)1-l( q(s) y(s)) (2.4)
2II

and

_ 1 E (y(s)- *Tq(s))2  
(2.5)M2 0

I

where

I B

and
QB {s = (i,j): sEP and (s+r)f,2

for at least one rEN}

We now state a theorem regarding the consistency of the estimate

6* and give an expression for the asymptotic variance of the
*

estimate 0 . An expression for the asymptotic variance of 0* for

an isotropic MRF model with Ns = {(0,1),(l,0)) is also given.

Theorem 1: Let y(s), sEP be the set of observations obeying

the MRF model (2.1). Then

(i) The estimate 0* is asymptotically consistent.
(ii) The asymptotic covariance matrix of 0* is

E(8-B") (-6") T = 1 [ Q- + 2v2 (0T Q)-l

1 1 1Z -( 2 . 6 )

-l ~ T (Q)I
- 2 t-I s r 0(s-r)-r,s

(s-r)(N

where

Q=E[q(s)qT (s)]

and

Tr, s =E[q(r)q T(s

-r~s ,,J



(iii) For the isotropic conditional model with N =

{(0,1),(1,0)}, the asymptotic expected mean square error is

E(O e*)2 202 (-48i) 2 (2.7)
-( = *)(2.2)

4M2 21l,0

aI = cov(y(s),y(s+(1,0))) (2.8)

cov(y 2 (s))

The elements of matrices Q and T r,s are functions of normalized

autocorrelation coefficients ak,Z" The proof is given in Appen-

dix I.

Although e* is a consistent estimate of 0, it is not very

efficient. We compare the efficiency of this estimate with

efficiencies of the coding estimate for a simple MRF model with

Ns = {(0,1),(1,0)1. The exact ML estimate is obtained by assuming

a toroidal lattice representation for y(s) and maximizing the

resulting log likelihood function by using the Newton-Raphson

procedure. Equation (2.4) can also be used for toroidal lattice

representation by summing over i instead of PI" The resulting

difference in the numerical value is negligible for sufficiently

large M.



2.3 Comparison of estimates

We compare the asymptotic variance of the estimate (2.4)

with the asymptotic variances of the coding estimate and ML

estimate for the isotropic conditional models with NS = {(0,l),(lO)}.

From [9], the asymptotic variance of the coding estimate ec is

M2Var() = (- 46iO (2.9)C 2a 1 0

Also from [9], the variance of the ML estimate 0 isML

Var( ML) 2  0.5 (2.10)Var (M) 2(I (e) - 4VI10(e))

where

1() = 1 (cos x+cos y) 2dxdy

4Tr 0 (1-20(cos x +cos y)

and

V (0) = 2- 0 cos(sx+ty)dxdy
st 4f (1-26(cos x + cos y))

Tabulated values of V10 (6), a1 ,0 and I(M) are available in [9]

for different values of 0. Using these values, and (2.7), (2.9) and

(2.10), tolumns 2-4 of Table I are computed. The asymptotic

efficiencies in columns 5 and 6 are defined by

eff(0 Var(6 ML)C Var(8 
C )

and
Var(e ML)eff (e*)=



It is evident that the estimate 0* computed using (2.4) is

more efficient than the coding estimate but is not as good

as the ML estimate. Note that column 5 is available in [9].

*1
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Appendix I

proof of Theorem 1:

i) We have from (2.4)

C E (s)q (s)Jl(Q(S)Y(S))()

AI

Substituting for y(s) from (2.1) and simplifying, we have

Zcl~sq~)36-)' ~ (s)e(s) (2)

Since E(q(s)e(s)) =0 by (2.2) and C 1:9(s)q T (s)J is a positive definite

matrix, the consistency of the estimate e* foLLows.

ii) To make our calculations easy we assume from now on thate(s)is normally

distributed. Multiplying (2) by its transpose and taking expectations,

we have

S s

-EC F, (s) e(s) F (q(r) e(r)) T (3)
Sr

LLE((s)e(s)) E(q T(r)e(r))
s r

s r



4)j~~ser)E(q(r)9 T(s)) 
(4)

(5)

=I+ 11 + 111, where

I =0 *by using (2.2);

ii=2 M 2 v2 1 mxm , by using (2.2);(7

Id F, '~ E(q(s)q T(s))
S

v EE O(s-r ) E (q(r)q T()
r s

(s-r) cN

Defining

EqsqT(s)m ati

E(q(s)q TCs)) Tr Q, mxm matrix

II M Q- v i' (s-r) !r,S

(s-r) cN

Substituting (6), (7), and (9) , we see that

RHS of (3)

s r
(s-r)icN



For Large values of M

1 Xq(s)qT(s) = Q + n(M), (11)

m s

where n(M) is such that

E( 2M)) = 0(- )

Using (11) we obtain

4
(LHS of (3))/M =

EC(Q + n(M))(e*-e)(e*-e)T(Q + nCM))T ]  (12)

Q E(e*_e)(e*_)T QT + 0(1/M 2 ), (13)

Substitution of (10) and (13) into (3) yields

T 1 2[I Q-1 + 2v 2(Q2)-I1
E(O*-e) ( *-o)T ML ~~ .l+2~~

- 2 -1 (S-r) -r,s- ,,( I + 0(I1/ 4) (14)
m ~s r

(s-r) cN

Q.E.D.
C) For the isotropic conditional model with NS = ((0,1), (1,0)), (14)

reduces to

E(e*_e) 1 1 [4v2M 2 (E(q2(s))2



+ VE(q2Cs)) - ev~ E~q(s)q(r))3 (15)
s r

(s-r)cN

wahere

q(s) = y~s+(O,1)) + y(s+(0,-1))

+ y(S+(l,O)) + Y(s+(-1,O)) (16)

Let

Yk,L E~y(s)y(s+(k,L))J (17)

Note

Yk -k and '" L,k - Yk, L (18)

Express the higher order correlations Y2,1 , -2 Y2,0  and Y30in

terms of y 0 0O, y 0 1,, Y1, 0 and Y 1,1 by

Yo,0  vI(1-4eal, 0)) (19)

1 -(20)

6 -- -9 -

0 20 26

(21)



2,0 Til, 0 " Y1- "OO - Y1,i (22)

=1 (23)
l_ - l,_1 - r1, 0

Equations (19-23) can be obtained by muLtiplying y(s) by appropriately

shifted y(s+(k,L)) and taking exDectations.

Consider the various terms In (15).

E(q2 (s)) = 1 , 0  (24)

- E(q(s)q(r)) = 4E9T 1 0 + Y3,0 + 3Y2,1 + 3YI -21
s r

(s-r) cN

1 1

4[4l,o + 3r,0 -( . 10,0 (25)

5ubstitution of (24) and 25) in (15) yieLds

_ 2

E(e*-e)2 M2 16 2 E4v 2 + 4vY0 , 0 - 160T1 , 0
v3

1,0

which on using (19) and a T1 ,0 /1 1 , 1 gives

2e2(14 001, "

4M2e2

1,0
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